Applying Compactness Constraints To Seismic Traveltime Tomography
نویسنده
چکیده
Tomographic imaging problems are typically ill-posed and often require the use of regularization techniques to guarantee a stable solution. Minimization of a weighted norm of model length is one commonly used secondary constraint. Tikhonov methods exploit low-order differential operators to select for solutions that are small, flat, or smooth in one or more dimensions. This class of regularizing functionals may not always be appropriate, particularly in cases where the anomaly being imaged is generated by a non-smooth spatial process. Timelapse imaging of flow-induced seismic velocity anomalies is one such case; flow features are often characterized by spatial compactness or connectivity. We develop a traveltime tomography algorithm which selects for compact solutions through application of model-space iteratively reweighted least squares. Our technique is an adaptation of minimum support regularization methods previously developed within the potential theory community. We emphasize the application of compactness constraints to timelapse datasets differenced in the data domain, a process which allows recovery of compact perturbations in model properties. We test our inversion algorithm on a simple synthetic dataset generated using a velocity model with several localized velocity anomalies. We then demonstrate the efficacy of the algorithm on a CO2 sequestration monitoring dataset acquired at the Frio pilot site. In both cases, the addition of compactness constraints improves image quality by reducing spatial smearing due to limited angular aperture in the acquisition geometry.
منابع مشابه
Constraints on Minimum Velocity Variance for Seismic Traveltime Tomography
SUMMARY Traveltime data together with known spacing between sources and receivers for seismic transmission tomography can be used to determine rigorous constraints on the minimum and maximum wave speeds in the propagating medium. These constraints lead to a new minimum variance criterion on inversion algorithms. These results do not improve the velocity reconstructions directly , but provide ri...
متن کاملApplying Compactness Constraints To Differential Traveltime Tomography
Tomographic imaging problems are typically ill-posed and often require the use of regularization techniques to guarantee a stable solution. Minimization of a weighted norm of model length is one commonly used secondary constraint. Tikhonov methods exploit low-order differential operators to select for solutions that are small, flat, or smooth in one or more dimensions. This class of regularizin...
متن کامل3D joint inversion of seismic traveltime and gravity data: a case study
Joint inversion of different geophysical datasets is an effective way to eliminate non-uniqueness in geophysical inversion problems. In this paper, we focus on a case study of joint inversion of seismic traveltime and gravity observations. The results are encouraging and we can have confidence that, comparing traveltime tomography alone, joint inversion of seismic traveltime and gravity data im...
متن کاملCrosshole seismic tomography with cross-firing geometry
We have developed a case study of crosshole seismic tomography with a cross-firing geometry in which seismic sources were placed in two vertical boreholes alternatingly and receiver arrays were placed in another vertical borehole. There are two crosshole seismic data sets in a conventional sense. These two data sets are used jointly in seismic tomography. Because the local sediment is dominated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006